636 research outputs found

    AEGIS: Infrared Spectral Energy Distributions of MIPS 70micron selected sources

    Get PDF
    We present 0.5 -160 micron Spectral Energy Distributions (SEDs) of galaxies, detected at 70microns with the Multiband Imaging Photometer for Spitzer (MIPS), using broadband imaging data from Spitzer and ground-based telescopes. Spectroscopic redshifts, in the range 0.2<z<1.5, have been measured as part of the Deep Extragalactic Evolutionary Probe2 (DEEP2) project. Based on the SEDs we explore the nature and physical properties of the sources. Using the optical spectra we derive Hbeta and [OII]-based Star Formation Rates (SFR) which are 10-100 times lower than SFR estimates based on IR and radio. The median offset in SFR between optical and IR is reduced by a factor of ~3 when we apply a typical extinction corrections. We investigate mid-to-far infrared correlations for low redshift (>0.5) and high redshift (0.5<z<1.2) bins. Using this unique ``far-infrared'' selected sample we derive an empirical mid to far-infrared relationship that can be used to estimate the infrared energy budget of galaxies in the high-redshift universe. Our sample can be used as a template to translate far-infrared luminosities into bolometric luminosities for high redshift objects.Comment: 4 pages, 5 figures, accepted for publication in AEGIS ApJL Special Issu

    The use and calibration of read-out streaks to increase the dynamic range of the Swift Ultraviolet/Optical Telescope

    Get PDF
    The dynamic range of photon counting micro-channel-plate (MCP) intensified charged-coupled device (CCD) instruments such as the Swift Ultraviolet/Optical Telescope (UVOT) and the XMM-Newton Optical Monitor (XMM-OM) is limited at the bright end by coincidence loss, the superposition of multiple photons in the individual frames recorded by the CCD. Photons which arrive during the brief period in which the image frame is transferred for read out of the CCD are displaced in the transfer direction in the recorded images. For sufficiently bright sources, these displaced counts form read-out streaks. Using UVOT observations of Tycho-2 stars, we investigate the use of these read-out streaks to obtain photometry for sources which are too bright (and hence have too much coincidence loss) for normal aperture photometry to be reliable. For read-out-streak photometry, the bright-source limiting factor is coincidence loss within the MCPs rather than the CCD. We find that photometric measurements can be obtained for stars up to 2.4 magnitudes brighter than the usual full-frame coincidence-loss limit by using the read-out streaks. The resulting bright-limit Vega magnitudes in the UVOT passbands are UVW2=8.80, UVM2=8.27, UVW1=8.86, u=9.76, b=10.53, v=9.31 and White=11.71; these limits are independent of the windowing mode of the camera. We find that a photometric precision of 0.1 mag can be achieved through read-out streak measurements. A suitable method for the measurement of read-out streaks is described and all necessary calibration factors are given.Comment: 11 pages, accepted for publication in MNRAS. Code available from the calibration link at http://www.mssl.ucl.ac.uk/www_astro/uvo

    Local Guarantees in Graph Cuts and Clustering

    Full text link
    Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min s−ts-t Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled ++ or −- and the goal is to produce a clustering that agrees with the labels as much as possible: ++ edges within clusters and −- edges across clusters. The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective. We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective. This naturally gives rise to a family of basic min-max graph cut problems. A prototypical representative is Min Max s−ts-t Cut: find an s−ts-t cut minimizing the largest number of cut edges incident on any node. We present the following results: (1)(1) an O(n)O(\sqrt{n})-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems), (2)(2) a remarkably simple 77-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of 4848), and (3)(3) a 1/(2+ε)1/(2+\varepsilon)-approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the 1/(4+ε)1/(4+\varepsilon)-approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games

    Algorithms for Visualizing Phylogenetic Networks

    Full text link
    We study the problem of visualizing phylogenetic networks, which are extensions of the Tree of Life in biology. We use a space filling visualization method, called DAGmaps, in order to obtain clear visualizations using limited space. In this paper, we restrict our attention to galled trees and galled networks and present linear time algorithms for visualizing them as DAGmaps.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    The incidence of myelodysplastic syndromes in Western Greece is increasing.

    Get PDF
    Descriptive epidemiology of the myelodysplastic syndromes (MDS) is always interesting and may reveal time-dependent and geographical variations, as well as occupational exposure. Epidemiological data in Greece are not available by now. We have collected and analyzed medical records of all patients with a documented diagnosis of MDS, performed by an expert hematologist and/or hematopathologist, in the geographical area of Western Greece, during the 20-year period, defined between 1990 and 2009. We have then calculated and described demographic and clinical features of the diagnosed MDS patient population, and assessed the incidence and prevalence rates of MDS in Western Greece, during the above-mentioned period. A total of 855 patients with newly diagnosed MDS have been identified. Refractory anemia was the most common subtype in both FAB and WHO classification systems and in both genders. Del-5q and RARS were more commonly encountered among females, and the dysplastic subtype of chronic myelomonocytic leukemia among males. Trisomy 8 was the most common single cytogenetic abnormality. The crude mean annual incidence rate of MDS was 6.0 per 100,000 inhabitants aged ≥15 years old (all subtypes according to FAB), and it was 4.8 per 100,000 when CMML and RAEB-T were excluded. Crude incidence rate was higher in rural than in urban areas, but this finding was not confirmed after age standardization. Age-standardized mean annual incidence rate in men was 7.9/100,000 and in women 3.4/100,000. A continuously increasing incidence rate of MDS has been observed throughout the study period

    Herschel/PACS observations of the host galaxy of GRB 031203

    Get PDF
    We present Herschel/PACS observations of the nearby (z = 0.1055) dwarf galaxy that has hosted the long gamma-ray burst (LGRB) 031203. Using the PACS data, we have been able to place constraints on the dust temperature, dust mass, total infrared (IR) luminosity and IR-derived star formation rate (SFR) for this object. We find that the GRB host galaxy (GRBH) 031203 has a total IR luminosity of 3 × 1010 L⊙ placing it in the regime of the IR-luminous galaxy population. Its dust temperature and specific SFR are comparable to that of many high-redshift (z = 0.3–2.5) IR-detected GRB hosts (Tdust > 40 K; sSFR > 10 Gyr−1); however, its dust-to-stellar mass ratio is lower than what is commonly seen in IR-luminous galaxies. Our results suggest that GRBH 031203 is undergoing a strong starburst episode and its dust properties are different to those of local dwarf galaxies within the same metallicity and stellar mass range. Furthermore, our measurements place it in a distinct class to the well-studied nearby host of GRB 980425 (z = 0.0085), confirming the notion that GRB host galaxies can span a large range in properties even at similar cosmological epochs, making LGRBs an ideal tool in selecting samples of star-forming galaxies up to high redshift
    • …
    corecore